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Abstract. We simulate vectorial spin systems solely with the microcanonical over-relaxation algorithm
where the temperature is calculated by a formula of Nurdin and Schotte. We show that this procedure is
the most efficient local algorithm besides the nonlocal cluster algorithm not only for first order transitions
but also for second order ones. A comparison is made with the Metropolis, heat bath, multicanonical and the
Creutz’s demon algorithms. We study, using these algorithms, the frustrated J1-J2 model on a cubic lattice
for XY , Heisenberg and O(4) spins. These models have a breakdown of symmetry Z3 ⊗SO(N)/SO(N −1)
for the number N = 2, 3, 4 of spin components leading to transitions of first order. We show that they
are strongly first order. Then, to test the over-relaxation update for second order transitions, we study a
ferromagnet on a cubic lattice and a frustrated antiferromagnet on a stacked triangular lattice. We finally
point out the advantages and the flaws of the over-relaxation procedure.

PACS. 05.70.Fh Phase transitions: general studies – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems – 75.10.Hk Classical spin models – 75.10.Nr Spin-glass and other random
models

1 Introduction

The common ensemble to study phase transitions of spin
systems is the canonical one, where the temperature is
fixed and the system can change its energy within a cer-
tain limit. This preference is due to the existence of fast
and easy to implement algorithms like the local heat-bath
and Metropolis algorithms and the non local cluster al-
gorithms. Cluster algorithms have considerably improved
the efficiency compared to the ones using local updates
but for frustrated spin systems unfortunately they cannot
be applied in an efficient way.

We would like to show that with the use of the mi-
crocanonical ensemble, where the system is isolated and
the energy must be constant, the performance of simula-
tions of vector spin systems can be improved compared to
the local canonical algorithms. We use the over-relaxation
procedure [1] where a spin is rotated around its local field
keeping the energy constant. This algorithm is usually
used in canonical Monte-Carlo simulations in combina-
tion with a heat bath or Metropolis algorithm to improve
the efficiency, see for example [2]. Here we apply the over-
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relaxation update alone. The temperature is then calcu-
lated as an average using the formulation of Nurdin and
Schotte [3]. This procedure has two advantages: it is fast
and we do not add additional degrees of freedom to calcu-
late the temperature contrary to the usual microcanonical
demon algorithm introduced by Creutz [4]. Indeed the last
algorithm adds corrections to the calculation of the prop-
erties of the spin system.

We will concentrate on the performance of the over-
relaxation algorithm for first and second order transitions
showing that it compares favorably to the other local algo-
rithms like the Metropolis, heat-bath and multicanonical
procedures. We will first introduce the method. Then, us-
ing it together with the other algorithms, we will study
first order transitions and then demonstrate its usefulness
also for second order transitions.

2 Methods: algorithms and microcanonical
temperature

2.1 Over-Relaxation (OR)

We assume that Hamiltonians of spin systems have the
form:

H = −
∑

〈ij〉
Jij Si · Sj = −1

2

∑

i

hi · Si, (1)
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where the sum 〈ij〉 runs over all mutually interacting spin
pairs only once, hi is the local field acting on the spin Si

at site i, the spin S is of norm unity, and the factor 1/2 is
due to double counting.

We consider microcanonical schemes as a succession
of single-spin updates. When the ith spin is selected for
an update, the interaction energy of this spin with the
surrounding ones is

Ei = −hi · Si = −hi xi (2)

and therefore xi = cos θi or the angle θi between hi and
Si should not change to keep the energy constant. Under
this restriction there remains a freedom for the spin to
precess around the local field hi if the spin has more than
two components.

The simplest and most efficient way to implement mi-
crocanonical updates corresponds to

Si −→ −Si + 2 hi(hi · Si)/h2
i , (3)

which means that the spin Si is flipped to the most distant
direction from the initial one preserving the angle with the
local field hi. We call this scheme “OR” to distinguish it
from the more general “OR+rotation” or “OR+R” update
where the rotation angle around a local field is chosen at
random. In the former and simpler OR-procedure no ran-
dom numbers are necessary. Depending on the spin dimen-
sion N the increase in time consumption of an OR+R up-
date as compared with that of an OR update varies from
a factor 2 for a Heisenberg spin to a large factor for a spin
with many components.

For XY spins it has been shown [5] that with OR
alone not all possible states could be reached and a multi-
spin algorithm should be used instead. We think that the
Heisenberg case is less problematic since these spins have
an additional component. Still for calculating critical ex-
ponents it could be wise to apply one OR+R step for
every 5 or 10 OR steps.

Another problem is the way to scan the lattice to avoid
ergodicity problems. One should not implement a sequen-
tial OR-update since collective motions in the spin system
could be generated which statistically have no weight [5].
As a compromise we divide the lattice into mutually non-
interacting sublattices and update one sublattice after the
other. The order of addressing the spins in one sublattice
does not matter. Another way to circumvent this problem
would be to change the order of updates statistically. To
do this economically one should generate about 100 differ-
ent orders for the spins before a simulation starts. After
visiting all spins of the lattice the order is changed to an-
other of the prefabricated ones. Using the simpler way of
sequentially updating the different sublattices we did not
encounter any problems.

2.2 Microcanonical temperature

With the microcanonical method the entropy of a system
is obtained, and the microcanonical temperature could in

principle be calculated by numerically differentiating the
entropy. However, this method gives noisy results, and is
difficult to apply in practice.

Nurdin and Schotte [3] have given a more useful and
explicit expression for the microcanonical temperature for
a Heisenberg spin system. If the Hamiltonian has the stan-
dard form (1), the inverse of the microcanonical temper-
ature is given by the average of

1
T =

−4H∑
i |hi × Si|2

(4)

over a microcanonical ensemble. A generalization to N di-
mensional spin vectors would be

1
T =

−2 (N − 1)H
∑

i

∑
k<l

∣∣ h k
i S l

i − h l
i S k

i

∣∣2 (5)

where the sum over all
(
N
2

)
possible vector product com-

ponents has to be taken besides the sum over all lattice
spins i. We prove in the appendix that this formula can
be simplified by restricting the sum to l = k + 1 with
N +1 ≡ 1 for l. Using this generalization the three dimen-
sional formula (4) with −4H in the numerator will be valid
for all dimensions. For N = 2 only one term contributing
twice appears, whereas for N ≥ 2 always N terms have
to be calculated. In both formulas (4) and (5) additional
terms ∝ 1/Ns are left out, where Ns is the number of
spins. Besides the practical point to neglect these rather
cumbersome corrections, the micro-canonical temperature
with its rather curious behavior for a few degrees of free-
dom contained in the full expression will certainly not be
relevant for large spin systems studied here.

We will now describe shortly Creutz’s demon algo-
rithm and the multicanonical algorithm in the form we will
use later to compare with the over-relaxation algorithm.
For the description of canonical Metropolis and heat-bath
algorithms especially for the efficiency of those simulation
techniques we refer to [6].

2.3 Creutz’s demon algorithm

In demon algorithm of Creutz [4] another degree of free-
dom called a demon is added, and the sum of energies of
the system and of the demon is kept constant. To some
extent the condition of energy conservation is relaxed. Be-
cause of the tendency to increase the entropy in the joint
system, the spin system is more likely to take energy from
the demon than to give it back, which means that the
demon energy will not be large. In order to update a con-
figuration of spins, a new direction for a spin is chosen
at random and it will be accepted as long as the demon’s
energy does not become negative.

To improve this Metropolis-like update method we ap-
ply here the better heat bath scheme. A spin Si is selected
for an update by requiring that the joint energy E0

−hi · Si + Ed = −hi xi + Ed ≡ E0, (6)
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should be constant. If one demands that the demon energy
Ed should be positive, then the new xi value can only be
chosen in the region max[−1,−E0/hi] ≤ xi ≤ 1. Thereby
we avoid spin directions which are to be rejected.

The temperature T is usually defined by the average
of the demon energy, since it is distributed proportion-
ally to exp(−Ed/T ). We note that the value Ed has a
lot of dispersion. The demon as a thermometer represents
only a tiny subsystem whereas using the spin temperature
formula (4) the temperature of a whole system is “mea-
sured”. Moreover in contrast to Ising case at least one
random number is needed for each step which also slows
down the simulation compared to the OR procedure.

2.4 Multicanonical method

The multicanonical method [7] for first-order phase tran-
sitions has been successful in alleviating an exponential
growth of the tunneling time between free energy minima
to an algebraic one. The basic idea is to sample the mixed
phase configurations with the same statistical weight as
the configurations of the pure phases.

The multicanonical algorithm is efficient in the sense
that a relevant energy range can be covered in a single run,
but with the proviso that a sufficiently good approxima-
tion for the density of states can be obtained in a reason-
able time. However, it slows down severely with increasing
system sizes connected with the problem of a widening
energy range to cover, since the method is only a random
walk in energy. The characteristic time of this algorithm in
units of scans of a lattice is expected to behave optimally
like ∼ Ld. In actual implementation with a succession of
single-spin updates, the performance of the algorithm is
usually worse.

The close connection between the micro-canonical and
the multi-canonical method of analyzing first order tran-
sition can be found in reference [8].

3 Models and numerical results

3.1 First order transition: J1-J2 antiferromagnet
on a cubic lattice

We consider a Heisenberg model on the simple cubic lat-
tice with the Hamiltonian

H =
∑

〈ij〉
J1 Si · Sj +

∑

〈〈ij〉〉
J2 Si · Sj , (7)

where the sums 〈ij〉 and 〈〈ij〉〉 run over nearest neighbors
and next-nearest neighbors pairs, respectively. Both inter-
actions J1 > 0 and J2 > 0 are positive or antiferromag-
netic. Energy and temperature will be measured in units
of J1. The numerical simulations are performed for sys-
tems of size L×L×L with periodic boundary conditions.
The lattice will be divided into eight cubic sub-lattices for
the OR-updates. This way, a sequential update is possible
as described in Section 2.1.

For 0 < J2 < J1/4 the ground state has a simple anti-
ferromagnetic structure. For J2 > J1/4 the ground state
has an additional degeneracy, besides the possibility of
a global rotation. However, by the mechanism of “order
by disorder” collinear states are selected in the ordered
phase. What remains are three different ways to choose
directions in the cubic lattice where the spins are paral-
lel. Each collinear state starting with an antiferromagnetic
configuration on a square lattice is completed by stack-
ing this spin order on top of each other. The breakdown
of symmetry between high and low temperatures will be
of the type Z3 ⊗ SO(N)/SO(N − 1) with Z3 the three
state Potts symmetry and SO(N)/SO(N − 1) the usual
breakdown of symmetry for ferromagnets for spins with
N components. For more details see for instance the re-
view article of one of the authors [9,10].

This breakdown of symmetry is therefore identical to
those found in hcp, fcc, stacked triangular lattice with
second neighbor interactions which also have strong first
order transition for XY and Heisenberg spins (see [9] and
references therein). One hypothesis advanced in the last
reference is that for any N the transition will be of first
order because of the same breakdown of the Z3 symme-
try (threefold degeneracy) which should always lead to a
first order transition in three dimensions. For J1-J2 model
on a cubic lattice this was checked for Heisenberg spins
only [11]. We show here that it is also true for XY and
O(4) spins.

In order to observe the first order character of the
phase transition more clearly, we choose for the ratio
J2/J1 the low value 0.26. In Figure 1a, b, c we show the
result for the OR for the energy as function of the tem-
perature for XY , Heisenberg and O(4) spins. When the
size L becomes large enough the energy-temperature re-
lation exhibits an “S”-shape typical for first order tran-
sitions. We note that for microcanonical simulations only
one temperature is determined for each energy and the
problem of canonical simulations does not arise where two
stable states of different energies can exist at a tempera-
ture. The size of the bend in the “S” decreases slowly as
function of the number of spin components N but we do
not think that the first order transition will become a sec-
ond order one for large N . This work is therefore in favor
of a first order transition in the breakdown of symmetry
Z3 ⊗ SO(N)/SO(N − 1) for any N in three dimensional
case.

We will now compare the efficiency of the algorithms.
The local canonical ones are extremely inefficient because
of the presence of, at least, two stable phases separated by
a region of very low probability. These simulations suffer
therefore from an extremely strong slowing down and their
autocorrelation time τ will have an exponential size depen-
dence. We compare three algorithms where this defect is
absent or less strong: the microcanonical over-relaxation
and Creutz’s demon algorithms, and the multicanonical
algorithm. For the microcanonical algorithms the auto-
correlation time τ is obtained by integrating the autocor-
relation function of magnetization [2]. For the multicanon-
ical algorithm, a characteristic time τMu is defined as the
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Fig. 1. Size dependence of the energy-temperature relation of the OR procedure for the J1-J2 antiferromagnet on a cubic
lattice. a) for XY spins, b) for Heisenberg spins, c) for O(4) spins. The three plots show the “S” shape characteristic of a strong
first order transition. d. Autocorrelation time (magnetization) for Heisenberg spins multiplied by the time consumption of one
step for the demon algorithm or the over-relaxation algorithm (put to 1) for comparison. “τMu” correspond to the tunneling
time for the multicanonical algorithm. The over-relaxation is by far the most efficient algorithm to study first order transition.

tunneling time which is the number of Monte Carlo steps
it takes for the system at Tc to travel from one peak to
the other.

The results are plotted in Figure 1d for Heisenberg
spins. The autocorrelation time is multiplied by the time
one step of each algorithm takes putting tOR = 1. In
our heat bath implementation the demon algorithm is
1.7 times slower than the OR one and the multicanoni-
cal algorithm by a factor of 2.1. We plotted the result for
the OR and demon algorithm at E = −1.09 which shows
the strongest size dependence. For another energy like at
E = −1.11 there is almost no size dependence visible.

We observe that the OR algorithm is almost 10 times
better than the demon algorithm. The comparison is even
more in favor of the OR algorithm when one compares
with the multicanonical algorithm which is for large size
two order of magnitude slower. We should remark, how-
ever, that only one simulation is necessary for the mul-
ticanonical procedure to extract properties of the system
for a larger range of temperature or energy. In contrast the
micro-canonical simulations must be repeated for each en-
ergy. However the OR simulation is so much faster than
the multicanonical one therefore is still better, in par-
ticular considering that the autocorrelation time τOR is
more or less constant as a function of the system size if
the energy deviates little from the energy of transition
E = −1.09.

In conclusion, the over-relaxation is the most efficient
algorithm for studying first order transition. Moreover it
is very easy to apply, in particular compared to the mul-
ticanonical method.

3.2 Second order transitions for ferromagnets
and frustrated Heisenberg antiferromagnets

We study two models with a second order phase transition.
The first one is a Heisenberg model with a ferromagnetic
interaction between nearest neighbor spins on a simple cu-
bic lattice given by the Hamiltonian (1) with J > 0. The
second model is an antiferromagnet on a stacked triangu-
lar lattice with nearest neighbor interactions J < 0. The
ground state of this frustrated system has a 120◦ struc-
ture [9]. No cluster algorithm exists for this case and the
fastest canonical algorithm is a heat-bath procedure [6].

The cubic ferromagnet has a genuine second order
phase transition and its critical temperature is 1.4432 [12].
The stacked triangular antiferromagnet shows “almost
second order transition” which, for the sizes considered
here, resembles a true second order transition [9]. The crit-
ical temperature is about 0.96.

In Figure 2a results of the microcanonical and canon-
ical methods for the cubic ferromagnet are shown. The
same temperature-energy relation are obtained as ex-
pected except for finite size effects not visible at this scale.

In Figures 2b and d the temperature dependence of the
autocorrelation time τ are shown for the magnetization of
the ferromagnet on a cubic lattice of size L = 10 and of
the antiferromagnet on a triangular lattice of size L = 12.
We observe for both models that the micro-canonical OR
is faster than the other algorithms. For the cubic ferro-
magnet (Fig. 2b) the gain is about 2.5 compared to the
demon algorithm, 3 compared to the heat bath and 7 com-
pared to the Metropolis algorithm. These numbers do not
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Fig. 2. a) Cubic ferromagnet: Energy-temperature relation for the over-relaxation (line) and for the Metropolis (points)
procedure. The errors are smaller than the symbols. b) Cubic ferromagnet: Autocorrelation time τ (magnetization) for size
L = 10. Me=Metropolis, HB=Heat Bath, de=Creutz’s demon, OR=Over Relaxation. c) Cubic ferromagnet: τ multiplied by
the time consumption of one step for the heat bath and the over-relaxation procedures (put to 1) as function of the size L.
The dynamical exponent zOR = 2.04(3) is similar to the one of the heat bath. The over-relaxation is almost ten times more
efficient than the heat bath. d) Stacked triangular antiferromagnet: Autocorrelation time τ (magnetization) for size L = 12.
The OR algorithm has similar properties for non frustrated and frustrated magnets.

take into account that the OR implementation runs faster
than the other algorithms, about three times faster than
the heat bath for example. Similar conclusions hold for
frustrated lattice as can be seen by comparing Figure 2d
with Figure 2b.

In Figure 2c we show for the cubic ferromagnet the
size dependence of the autocorrelation time τ at Tc, or
at the critical energy Ec for microcanonical simulations,
obtained in the log-log scale by fitting to the form τ = τ0 ·
Lz. For this purpose the critical energy Ec was estimated
by extrapolating EL to L → ∞ using the scaling relation

EL = Ec − a L−(1−α)/ν, (8)

where EL is a canonical average of the energy at Tc for a
finite lattice of size L. We adopted the values found in the
literature for Tc and for the critical exponents α and ν,
and estimated the critical energy to be about −0.989. The
dynamic critical exponent z obtained is 2.04(3) for the OR
procedure, similar to the one for the heat bath algorithm.

Therefore, for a second order transition the OR is the
fastest local algorithms and could be used to calculate
the critical exponents [13]. However the OR procedure
has a disadvantage compared to the canonical ones: re-
sults cannot be resummed for another energy. Therefore
many more simulations for different energies are necessary.
Since the OR is about ten to twenty times faster than the
heat bath it could still be better depending on the model
studied.

3.3 Spin glasses

We tried to apply this method to the spin glasses. However
the microcanonical over-relaxation seems not be adapted
to these systems and we found that the exchange algo-
rithm [14] coupled with a canonical heat bath has a much
better performance [6].

4 Conclusion

We wanted to show that the over-relaxation procedure is
the fastest of the local algorithms, cluster algorithms ex-
cluded. Especially well adapted to study first order tran-
sition it could be also of use to study second order tran-
sitions. We hope that this publication will increase the
interest in this method and further its use.

Appendix: Micro-canonical temperature
for O(N) spins

In a molecular dynamics simulation for a system of clas-
sical particles one takes usually the kinetic energy as a
measure for the temperature. For a system of three com-
ponent spins Si we use together with the over-relaxation
simulation the average of expression (4) to determine the
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temperature. The spin temperature formula (4) written as

TO(3) = −
∑

i Ṡ
2

i

4H
, (A.1)

shows clearly its analogy to the particle temperature
Tpart = m

∑
i ẋ2

i

/
(3N ), where the number of particles

N is the normalizing factor instead of the energy H for
the spin system given by (1). The squares of the velocities
Ṡi or ẋi appear in both cases. For spin systems one would
have to integrate

Ṡi = [Si × hi] , (A.2)

where hi = −∇i H is the local field (equivalent to the
definition in (1)) acting like a magnetic field on the
spin Si. However, the over-relaxation algorithm as a “stro-
boscopic” molecular dynamics simulation is better suited
to calculate thermodynamic entities as shown in preceding
sections.

To obtain a generalization of (4) or (A.1) for spins
with more than three components we have to go back to
the definition of the entropy S(E) given by the integral
over all “phase space” V , where the energy E is constant

exp(S) =
∫

δ(E −H) dV . (A.3)

Formally written with a δ-function. This is an integral
over the constant energy surface O

exp(S) =
∮

H=E

�X d�O =
∫

θ(E −H) div �X dV . (A.4)

Which can be transformed using Gauss’ formula to an
integral over the part of phase space with H ≤ E indicated
by Heaviside’s step function θ. The vector of the surface
element d �O and of the gradient of the energy “gradH”
are parallel. The simplest form for �X = gradH/|gradH |2
corresponds to the condition that the weight to sum over
the constant energy surface is 1/|gradH|, which gives the
standard formula for the density of states.

The more flexible form of (A.4) with a vector field is
due to Rugh [15] who notices that for the “flow” in phase
space �X only the restriction

gradH · �X = 1 (A.5)

is necessary. This means that d �O and �X need not be par-
allel, but the “flow” �X across the constant energy surface
should be the same. With the temperature definition

1
T

=
dS

dE
. (A.6)

one gets by taking the logarithm of (A.4) from the last
term on the r.h.s. by differentiating with respect to the
energy E a ratio of equal energy integrals

dS

dE
=

∫
δ(E −H) div �X dV

/∫
δ(E −H) dV . (A.7)

Since dS/dE = 1/T one can now read off Rugh’s formula

1
T = div �X (A.8)

the average of which gives according to (A.6) the in-
verse of the temperature T . For a particle system one
puts �Xpart = m (0, p1, . . . 0, pN )

/ ∑N
i=1 p 2

i and checks
that (A.4) is valid, since all entries for the particle co-
ordinates xi have been put to zero. Using (A.6) one ob-
tains 1/Tpart ≈ 3N m

/ ∑N
i=1 p 2

i . This form is valid for
large particle numbers N , where the differentiation of
the kinetic energy in the denominator �X would give only
O(1/N ) contributions [15].

What is now the flow �X for a Hamiltonian of the
Heisenberg type given by equation (1)? For three dimen-
sional spins the flow �X is given by the following formula.

Xi =
Si × [Si × hi]∑

i |Si × hi |2
. (A.9)

Instead of a 6N dimensional vector it is a 3N vector
consisting of a collection of three dimensional ones Xi

like Si. With gradH = (∇1, . . . ∇N )H = −(h1, . . . hN )
one checks easily (A.4), that is for the sum one obtains∑

i(−hi) · X i = 1 . With (A.9) one has another essential
restriction Xi · Si = 0, since the length of a spin vector
Si is fixed. This differs from a particle systems, where the
coordinates are usually not constrained.

The transposition of (A.8) to the N -component spins
(S1

i , . . . SN
i ) with the molecular field (h1

i , . . . hN
i ) at site

i is not complicated, using Si × [Si × hi] = Si(Si · hi) −
hi(Si · Si)

Xk
i =

N∑

l=1

Sl
i(S

k
i hl

i − Sl
ih

k
i )

/∑

i

∑

k<l

(Sk
i hl

i − Sl
ih

k
i )2 .

(A.10)
In the denominator the contributions of the

(
N
2

)
different

terms of the torque in N dimensions Dkl
i = Sk

i hl
i − Sl

ih
k
i

should be summed only once. Since
∑

i

∑N
k=1(−hk

i )Xk
i =

1 and
∑N

k=1 Sk
i Xk

i = 0 one can proceed to find an expres-
sion for the temperature using (A.7), that is

∑

i

N∑

k=1

∂Xk
i

∂Sk
i

≈

(N − 1)
∑

i

N∑

l=1

Sl
ih

l
i

/∑

i

∑

k<l

(Sk
i hl

i − Sl
ih

k
i )2 .

Only the numerator of (A.9) has been differentiated to
obtain a formula for the the thermodynamic limit

(
1
T

)

O(N)

=
−2 (N − 1)H∑

i

∑
k<l(S

k
i hl

i − Sl
ih

k
i )2

(A.11)

where
∑

i

∑N
l=1 Sl

ih
l
i = −2H according to (1) has been

used as a simplification to obtain (5).
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Another generalization of the three dimensional
ansatz (A.9) to higher dimensions is

X̃k
i =

∑

±
Sk±1

i

(
Sk

i hk±1
i

− Sk±1
i hk

i

)/∑

i

∑

k

(
Sk

i hk+1
i − Sk+1

i hk
i

)2
, (A.12)

that means only N special components of the torque
Dk,k+1

i = Sk
i hk+1

i −Sk+1
i hk

i instead of all
(
N
2

)
components

are taken into account. As before the nonsensical index
N + 1 ≡ 1. Still

∑N
k=1 Sk

i X̃k
i = 0 and also (A.4) is valid

as before. For the temperature using (A.7) one obtains

∑

i

∑

k

∂Xk
i

∂Sk
i

≈

∑

i

∑

k

∑

±
Sk±1

i hk±1
i

/ ∑

i

∑

k

(Sk
i hk+1

i − Sk+1
i hk

i )2

so that corresponding to (4)(
1

Tmod

)

O(N)

=
−4H

∑
i

∑
k(Sk

i hk+1
i − Sk+1

i hk
i )2

. (A.13)

Both formulas (A.11) and (A.13) are the same and equiv-
alent to the known ones for N = 2 and 3. For N ≥ 4 one
would prefer (A.13) as we have done here for N = 4,
since it will be less time consuming in a micro-canonical
simulation. However, one should check with the results a
permutation of the indices 1, 2, . . . N would give.
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